您的位置:首页 >我爱生活 >

高中数学必修二公式大全(完整版)(高中数学必修二公式)

导读 大家好,我是小曜,我来为大家解答以上问题。高中数学必修二公式大全(完整版),高中数学必修二公式很多人还不知道,现在让我们一起来看看吧...

大家好,我是小曜,我来为大家解答以上问题。高中数学必修二公式大全(完整版),高中数学必修二公式很多人还不知道,现在让我们一起来看看吧!

包括:

- 面和线的重合

- 两面角和立体角

- 方块, 长方体, 平行六面体

- 四面体和其他棱锥

- 棱柱

- 八面体, 十二面体, 二十面体

- 圆锥,圆柱

- 球

- 其他二次曲面: 回转椭球, 椭球, 抛物面 ,双曲面

公理

立体几何中有4个公理

公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.

公理2 过不在一条直线上的三点,有且只有一个平面.

公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

公理4 平行于同一条直线的两条直线平行.

立方图形

立体几何公式

名称 符号 面积S 体积V

正方体 a——边长 S=6a^2 V=a^3

长方体 a——长 S=2(ab+ac+bc) V=abc

b——宽

c——高

棱柱 S——底面积 V=Sh

h——高

棱锥 S——底面积 V=Sh/3

h——高

棱台 S1和S2——上、下底面积 V=h〔S1+S2+√(S1^2)/2〕/3

h——高

拟柱体 S1——上底面积 V=h(S1+S2+4S0)/6

S2——下底面积

S0——中截面积

h——高

圆柱 r——底半径 C=2πr V=S底h=∏rh

h——高

C——底面周长

S底——底面积 S底=πR^2

S侧——侧面积 S侧=Ch

S表——表面积 S表=Ch+2S底

S底=πr^2

空心圆柱 R——外圆半径

r——内圆半径

h——高 V=πh(R^2-r^2)

直圆锥 r——底半径

h——高 V=πr^2h/3

圆台 r——上底半径

R——下底半径

h——高 V=πh(R^2+Rr+r^2)/3

球 r——半径

d——直径 V=4/3πr^3=πd^2/6

球缺 h——球缺高

r——球半径

a——球缺底半径 a^2=h(2r-h) V=πh(3a^2+h^2)/6 =πh2(3r-h)/3

球台 r1和r2——球台上、下底半径

h——高 V=πh[3(r12+r22)+h2]/6

圆环体 R——环体半径

D——环体直径

r——环体截面半径

d——环体截面直径 V=2π^2Rr^2 =π^2Dd^2/4

桶状体 D——桶腹直径

d——桶底直径

h——桶高 V=πh(2D^2+d2^)/12 (母线是圆弧形,圆心是桶的中心)

V=πh(2D^2+Dd+3d^2/4)/15 (母线是抛物线形)

平面解析几何包含一下几部分

一 直角坐标

1.1 有向线段

1.2 直线上的点的直角坐标

1.3 几个基本公式

1.4 平面上的点的直角坐标

1.5 射影的基本原理

1.6 几个基本公式

二 曲线与议程

2.1 曲线的直解坐标方程的定义

2.2 已各曲线,求它的方程

2.3 已知曲线的方程,描绘曲线

2.4 曲线的交点

三 直线

3.1 直线的倾斜角和斜率

3.2 直线的方程

Y=kx+b

3.3 直线到点的有向距离

3.4 二元一次不等式表示的平面区域

3.5 两条直线的相关位置

3.6 二元二方程表示两条直线的条件

3.7 三条直线的相关位置

3.8 直线系

四 圆

4.1 圆的定义

4.2 圆的方程

4.3 点和圆的相关位置

4.4 圆的切线

4.5 点关于圆的切点弦与极线

4.6 共轴圆系

4.7 平面上的反演变换

五 椭圆

5.1 椭圆的定义

5.2 用平面截直圆锥面可以得到椭圆

5.3 椭圆的标准方程

5.4 椭圆的基本性质及有关概念

5.5 点和椭圆的相关位置

5.6 椭圆的切线与法线

5.7 点关于椭圆的切点弦与极线

5.8 椭圆的面积

六 双曲线

6.1 双曲线的定义

6.2 用平面截直圆锥面可以得到双曲线

6.3 双曲线的标准方程

6.4 双曲线的基本性质及有关概念

6.5 等轴双曲线

6.6 共轭双曲线

6.7 点和双曲线的相关位置

6.8 双曲线的切线与法线

6.9 点关于双曲线的切点弦与极线

七 抛物线

7.1 抛物线的定义

7.2 用平面截直圆锥面可以得到抛物线

7.3 抛物线的标准方程

7.4 抛物线的基本性质及有关概念

7.5 点和抛物线的相关位置

7.6 抛物线的切线与法线

7.7 点关于抛物线的切点弦与极线

7.8 抛物线弓形的面积

八 坐标变换·二次曲线的一般理论

8.1 坐标变换的概念

8.2 坐标轴的平移

8.3 利用平移化简曲线方程

8.4 圆锥曲线的更一般的标准方程

8.5 坐标轴的旋转

8.6 坐标变换的一般公式

8.7 曲线的分类

8.8 二次曲线在直角坐标变换下的不变量

8.9 二元二次方程的曲线

8.10 二次曲线方程的化简

8.11 确定一条二次曲线的条件

8.12 二次曲线系

九 参数方程

十 极坐标

十一 斜角坐标

本文到此讲解完毕了,希望对大家有帮助。

免责声明:本文由用户上传,如有侵权请联系删除!