您的位置:首页 >综合知识 >

三角恒等式公式的证明(三角恒等式公式)

导读 大家好,小房来为大家解答以上的问题。三角恒等式公式的证明,三角恒等式公式这个很多人还不知道,现在让我们一起来看看吧!1、三角函数转换...

大家好,小房来为大家解答以上的问题。三角恒等式公式的证明,三角恒等式公式这个很多人还不知道,现在让我们一起来看看吧!

1、三角函数转换公式诱导公式:sin(-α)= -sinα;cos(-α) = cosα;sin(π/2-α)= cosα;cos(π/2-α) =sinα;  sin(π/2+α) = cosα;cos(π/2+α)= -sinα;sin(π-α) =sinα;cos(π-α) = -cosα;  sin(π+α)= -sinα;cos(π+α) =-cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两角和差公式:sin(AB) = sinAcosBcosAsinBcos(AB) = cosAcosBsinAsinBtan(AB) = (tanAtanB)/(1tanAtanB)cot(AB) = (cotAcotB1)/(cotBcotA) 3、倍角公式  sin2A=2sinA•cosAcos2A=cosA2-sinA2=1-2sinA2=2cosA2-1tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半角公式  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))5、和差化积  sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)6、积化和差  sinαsinβ= -1/2*[cos(α-β)-cos(α+β)]cosαcosβ =1/2*[cos(α+β)+cos(α-β)]sinαcosβ =1/2*[sin(α+β)+sin(α-β)]cosαsinβ = 1/2*[sin(α+β)-sin(α-β)]万能公式。

本文到此分享完毕,希望对大家有所帮助。

免责声明:本文由用户上传,如有侵权请联系删除!